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A NONCONFORMING MIXED MULTIGRID METHOD 
FOR THE PURE TRACTION PROBLEM 

IN PLANAR LINEAR ELASTICITY 

SUSANNE C. BRENNER 

ABSTRACT. A robust optimal-order multigrid method for the pure traction prob- 
lem in two-dimensional linear elasticity is studied. The finite element discretiza- 
tion is a variant of a mixed method proposed by Falk where the displacement is 
approximated by nonconforming piecewise linear functions and the "pressure" 
is approximated by piecewise constant functions on a coarser grid. Full multi- 
grid convergence is obtained. The performance of this multigrid algorithm does 
not deteriorate as the material becomes nearly incompressible. 

1. INTRODUCTION 

Let Q be a bounded convex polygonal domain in R2. The pure traction 
boundary value problem for planar linear elasticity is given by 

-div{2,u(u) +) tr (,(u))6}=f inQ, 

(1.1) 

(2 , E (u) + i tr (E(u)) 3) v = g on aQ, 

where u is the displacement, f is the body force, g is the boundary trac- 
tion, ,u > 0, A > 0 are the Lame constants, and v is the unit outer normal. 
Throughout this paper, an undertilde is used to denote vector-valued functions, 
operators and their associated spaces. Double undertildes are used for matrix- 
valued functions and operators. We define 

gradp= (dp/dxi divT- (dTii/ldXI+dziT2/d9X2 d 
OP10OX2 

) i 
dT21/1dXI + dT22/0X2 / 

curlp = ( aP X2 

div v = Ivi/dxI + v2/0x2, rot v = -0V110X2 + AV2/9X, 
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and 

grad v = (avi/axi dvi/dx2) 

We also define 

J 1 ?) X (? -1) 

and 
tr(T)= T: , 

where 
2 2 

CT T ZZaijTij. 
i=1 j=1 

Finally, 

( )= 2 [grad v + (grad v)t] 

We assume that the Lame constants (,u, A) belong to the range [,UI, /12] x 
[A I, oo), where #1, I,2, AI are three fixed positive constants. 

We shall denote by H k (Q) the standard L2 Sobolev spaces of vector-valued 
functions, and we use the following conventions for Sobolev norms and semi- 
norms: 

(1.2) IIQIIHm(Q) :( Z lIaal2dx) 
'2 and 

jal<m 

(1.3) IWI Hm (S) = (n E 12 - dx)1/ 
lal=m 

Let RM = {v :Vt=(a + bx2, c - bxl), a, b, c E R} be the space of 
infinitesimal rigid motions. Since e(v) = 0 for all v E RM , one should 

look for a unique solution of (1. 1) in a subspace of H k (Q) which is transversal 
to RM . The unique solvability and regularity theorems are usually stated on 
the space 

(1.4) Hk (Q) ={v E Hk(Q): v dx = , rot v dx = O}. 

However, for the design and analysis of a multigrid method, it is better to use 
the space 

(1.5) Hk(Q) ={v H k(Q):J v.wdx=O VW E RM}. 

We also use the notation L2 for H . We assume that the origin of our 
coordinate system is chosen to be the centroid of Q, so that RM has the 
following orthonormal basis: 

where( w= f .6) j+x/2 () d 2 xQI/2 1 ) 3 C( X 

where cl) = I;(1 2)dx . 
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Let the operators Tjl and TAJ- be defined by 

(1.7) T_(V) = v _ [l( rot v dx) 

and 

(1.8) TA-(v) =v - (v * / dx) V'3 

Then clearly for k > I 

(1.9) T1: H(() kH) and T1: H (Q) 

TA-L(Tiv)=v 
Vv eHkj() and 

TL( v)=v VVEH (.Q),an 
(1.10) 1(v)= 7 (Tl( VvT(T v)v =K2), 

and 

(1.12) div( v )=div (T(v ))V v E H k (). 

There exist positive constants C1 and C2 such that ( k > 1) 

(1.13) ClIT(v )II Hk(Q) k |v|Hk(Q)?C2IIT1 (V)||Hk(Q) Vv) e 

By Friedrichs' inequality (cf. [9, Theorem 1.1.5]), (1.13) also holds for Ht 

( 1 < e < k) norms: 

(1.14) ClT (V)I Ht(O) < IV IH t() < C21T1(v)IHe(-) Vv e )IH(Q). 

Using these operators, one can translate results for the H (Q)-space to the 
H k (Q)-space and vice versa. 

Since the boundary of a polygon has corners, the boundary conditions in 
(1.1) must be carefully interpreted. We shall denote by Si, 1 < i < n, the 
vertices of Q; by Fi, 1 < i < n, the open line segments joining Si to Si+I; 
by T the positively oriented unit tangent along Fi; and by vz the unit outer 
normal along Fi. Henceforth, Sn+I and Fn +I should be interpreted as S1 and 
F1, respectively. 

Let p e H1/2(Fi) and q e HI/2(rF+1). We say that p _ q at Si+, if 
iq(s) - p(-s)12 d < 00, where s is the oriented arc length measured from 

Si+I, and 3 is a positive number less than min{IF ri 1 < i < n}. 
Equation (1.1) can be written more precisely as 

-div{2,u (u) + Atr (,Eu)) 6} = f in Q, 

(2ILE(u) +iAtr)) ) vIJr, = g, 1 < i < n 

where f E L2(Q),and g eH1/2(F1) satisfy 
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If we assume that the following compatibility condition holds, 
n 

(1.17) J f*v dx+Ej g. vIr- ds =0 VV ERM, 

then the pure traction boundary value problem (1.15) has a unique solution 

U E H2(Q) . Moreover, there exists a positive constant CQ such that 

(1.18) IIuIH 2(n) + div e IIHI(Q) ? cn {O 11 f 11 L2(a) +2 Ki E119 6H/2(r,) } 

(cf. [3, 7, 8]). 
By using (1.10) and (1.11), we see that (1.15) also has a unique solution 

U E HI2() and 

(1.19) U = TL U1. 

Therefore, (1.12), (1.13), and (1.18) imply that there exists a positive constant 
CQ such that 

(1.20) 11 eUiL H2(a) +AIIdiv uIIHI(Q) < C, {II fIIL2(n) +II 9IIH1/2(r1)}. 
-A-~~~~~~~~= 

From now on, we will simply denote u1 by u . 
Henceforth, (1.16) and (1.17) are assumed to be true. Let y = A/(2,u) and 

p = y div u; then a mixed formulation for (1.15) is: 
Find (u, p) E H (Q) x L2(Q) such that 

JE(u): (v) dx + jp(divv) dx 

(1.21) 1 f dx+ r gi vII- ds] 

j(divu)qdx-- |pqdx=0 

for all (v, q) E H 11 (Q) x L2(Q2). 
Equation (1.21) can be written concisely as 

(1.2) T((^ ' P)' (^ q)) 28 fI ^8 
v d+ r ^g 

v Jr,, ds 

for all ( v , q) E H 1(Q) x L2(Q), where the symmetric bilinear form 5(j,.) 

on H (Q) x L2(Q) is defined by 

1 qL{ ~)' q v-' q2)) 

= {(vl ) e f(Av) + q (divv vz) + (divv~l) q2 - y q, q2 }dx. 
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It is clear from the definition of 9 that 

( ((vl, q (v2' q2)) < max V2L) (~ IV I(Q) + IIql IIL2(n)) 

I v2 I HI (Q) + IIq2 IIL2(Q)). 

Let 4 (k > 0 ) be a sequence of triangulations of Q, where 4+I is ob- 
tained by connecting the midpoints of each of the triangles in 4k. We will 
denote maxfdiamT: Te4} by hk. For k>0,let Qk={q:qE L2(Q) and 
qlT is a constant for all T e 4k}. The nonconforming finite element spaces 
V k > I ) are defined as follows: 

V = {v: V E L2(Q), VIT iS linear for all T E 4, v is continuous 
( 1.24) k ,% e. 

at the midpoints of interelement boundaries }. 

Since Vk is nonconforming, any differentiation of members of V k must be 
done piecewise. We define the operators divk, rotk, and gradk as follows: 

(divkV) = div (vIT) 

(rotkv)T = rot (vIT) 

(gradkv) = grad vT 

for all T E 4 . We also denote by V 'L the subspaces of V whose members 
satisfy 

(1.25) jv.wdx=O VwERM. 

The following discretization of (1.22) is a modification of one introduced by 
Falk in [6]. 

Find ( uek _kpk) E k X Qk-l (k > 1 )suchthat 

(1.26) q) ( 
- 

P dx + 
g, 2 v Jr, ] 

for all (v , q) E V1' x Qk-1 . Here the symmetric bilinear form ?k on 

(Hl(Q)+ Vk) x L2(Q) is defined by 

gk ((21iql ) q (v q2)) 

(1.27) - j { ~ e* (V + q1 (diVkV2) +(diVkV)q2 - !qlq2} dx, 

where 

(1.28) e(v) = gradk - (Pk- rotkV) X 
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and Pk (k > 0) is the L2 orthogonal projection onto Qk . Note that there 
exists a positive constant C such that 

(1.29) 
el_, l q q2) 

? C + IllqllIL2(i)) (lI2Ilk + IIq2IIL2(Q)) 

where the nonconforming energy norm 11 * Ilk on H 1(Q) + V is defined by 
?~~~ 

( 1. 30) || V Ilk := I11 gradk ve% 11 L 2 (Q) 

Henceforth, C (with or without subscripts) denotes a generic positive constant 
independent of the Lame constants and the mesh parameter k. 

We shall show in ?2 that (1.26) is uniquely solvable and derive the following 
discretization error estimate: 

l- kk IIL2(Q) + hk (liu -k Ilk + IIP -Pk IIL2(Q)) 
(1.31) < Chn {lIflL2(Q) + E lIgJlIH/2(Fi)} 

In this paper we will develop an optimal-order multigrid method for solving 
(1.26). Let nk be the dimension of V L x Qk- 1. Our full multigrid algorithm 
will yield an approximate solution ( u k p Pk) to (1.26) in & (nk) steps such that 

- QkIIL2( + hk (IIUk - kIlk + IIPk -Pk 1IIL2(Q)) 

(1.32) < Chk { If lL2(Q) + 11 -g IH1/2(Fr) 

Since the constant C in (1.32) does not depend on the Lame constants, the 
performance of our multigrid method will not deteriorate as the material be- 
comes nearly incompressible. As documented in [ 1], for nearly incompressible 
linear elasticity problems, the standard multigrid method using conforming bi- 
linear finite elements requires an extremely large number of smoothing steps in 
order to achieve convergence. Our algorithm converges with a small number of 
smoothing steps, independent of the Poisson ratio. 

The rest of this paper is organized as follows. We establish the discretization 
error estimate (1.31) in ?2. Since the finite element space Vk is nonconform- 
ing, appropriate intergrid transfer operators must be chosen. This is done in ?3, 
where the mesh-dependent norms are also defined. The estimates for the inter- 
grid transfer operators established in this section are crucial to the convergence 
analysis of the multigrid method. In ?4 we define the multigrid algorithm. The 
convergence results are stated in ?5. The details of the proofs are found in the 
supplement to this paper. Results of some numerical experiments are reported 
in ?6. 

2. THE MIXED METHOD 

The first ingredient in establishing directly the unique solvability of (1.22) is 
the following well-known Kom's second inequality (cf. [10]): 
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There exists a positive constant C such that 

(2.1) (v L 2()e H 1 (Q) 

Using (1.11) and (1.14), we deduce that there exists a positive constant C 
such that 

(2.2) I| I (v)II L2(O) > C I v e H 
The second ingredient is the following property of the divergence operator. 

Lemma 2.1. Given any q e L2(Q), there exists v e H such that 

(2.3) div v = q 

and 

(2.4) 1 1I H I(Q) < CQl llqlI L2 (Q) 

Proof. Let D be an open disc that contains Q. Extend q to be zero on D\Q. 
Let 4 e H2(Q) be the solution of 

(2.5) A'=q inD, 4 = O on aD. 

Then from elliptic regularity (cf. [9, Theorem 4.2.1]) we have 

(2.6) IICIIH2(D) < CQ IIqIIL2(D)- 

Let (cf. (1.6)) 

(2.7) v = grad CIO n ( grad YI dx VI. 

It is clear that v e H (Q). The lemma now follows from (2.5) and (2.6). 5 

Proposition 2.2. There exists a positive constant C, which depends only on Q, 
such that for any ( v 1q1) e H x L2(Q), 

1((V , ql), (V , q2)) 
sup I I2I2 

(2.8) (v2 , q2)EHI xL2(Qj)\{(O, O)} IHIH(Q) + IIq2IIL2(Q) 

> C VI HI(Q) + llqlIIL2(j)) 

Proof. Given (v l,ql)e H xL2(Q),let 

1w(( 
l 

(ql) V-q ( q2)) 

S ~~~~~~sup1 1 1 

( , q2)E H xL2(Qj)\{(0 V ) 1H'Q + IIq2IIL2(Q 

First we consider the case where q1 = y div v . By Kom's second inequality, 

(v,1 qi), (v1, 0)) = J{(V1): E(v1) + y (div v 1)2} dx 
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Therefore, 

(2.9) s > CVI lH (Qi)- 

By Lemma 2.1, there exists v E H such that 

(2.10) div v = q1 and 1 11(Q)?C lql IIL2((Q) 

Using the definition of s, (2.9), and (2.10), we have 

IIL2(l ) ((V, ql), (v, 0)) + |/(V 1: (V vdx 

< SIV IHI (Q) + IV1 IHI (Q) IV IHI (Q) < Cs liql IIL2(Q) 
Therefore, 

(2.11) lIql IIL2(Qj) < Cs. 

Combining (2.9) and (2.11), we obtain (2.8) in the special case where q1 = 
ydiv v1. 

We now turn to the general case. Given (v 1,ql) E H x L2(Q), by Lemma 
2.1 there exists w E H1 such that 

1 
(2.12) divw =-q- divv and q1 - divv 

-yI3 IH l(O)?<C -q1-divv 

Then y div (v 1 + w) = q1 . From the special case, we know that 

((V +w, ql), (v2, q2)) 

(2.13) (v2 ,q2)EHI xL2()\{(O O)} I2 IHI(Q) + IIq2IIL2( iQ) 

> C (I1 +'WIH1(Q) + IIq1IIL2( Q)) 

Therefore, by (2.13), the bilinearity of T and (1.23), we have 

(2.14) I1IHV(Q) + lIq1IIL2(j) < ?I + WIH1(Q) + IIq1IIL2(Q)] + IWIHI(Q) 
<S+ CIWIHI(Q) 

On the other hand, by the definition of -', 

(5l - divv| 2 = ((VI ql), (0, divv1 !ql)) 

(2.15)~~~~~~~~~~~~~~~~ 
< S ||-ql - divv l| 

Combining (2.12) and (2.15), we see that 

(2.16) II W 11 H I(Q) < Cs. 

The proposition now follows from (2.14) and (2.16). 5 

The following corollary is a consequence of Proposition 2.2 and Friedrichs' 
inequality. 
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Corollary 2.3. Given any bounded linear functional F on H 1 x L2(LI), there 

is a unique (V1 ql) E H 1 x L2(Qi) such that 

(2.17) W ((v ql), (v 2 ) = F ((v 2 ) (V q2) E Ht x L2(Q2). 

In particular, equation (1.22) is uniquely solvable. 

Similarly, there are two ingredients in establishing the unique solvability of 
the discretized equation (1.26), namely a discrete Korn's second inequality and 
an analog of Lemma 2.1. 

We begin with the discrete Kom's second inequality. Let V Vk = {E Vk: 

fa v dx = 0 and f12rotkv dx = 0}. Analogous to (1.7) and (1.8), define 

Tl: ~~V klVkand T,- Z k V 
k 
by 

(2.18) T(v) = - 2lI (jrotkV dx) V I 

and 

(2.19) T-L(v)= v - (f v* dx) 3 

Since k*(V/ )= E(/3 )= 0, we have 
-k -3 

(2.20) _ k)=~k ( V)) VV E V V 

By the discrete Friedrichs' inequality (cf. [14]) for Vk' there exist positive 
constants C1 and C2 such that 

(2.21) C 11TAL( V)IlIk < 11 V|Ik < C21TL(V )Ilk VV E V'- 

The proof of the following discrete Korn's second inequality can be found in 
[6]. 
Lemma 2.4. There exists a positive constant C such that 

11 *( v )|| L 2(Q) 
> C 11 V Ilk V V E 

k 

With the aid of the operator Tj we can translate Lemma 2.4 into a result 
on V'1 , k 

Corollary 2.5. There exists a positive constant C such that 
I 
*( v )11 L2(Q) 

> C || V||k V V E Vk 

Proof. Let V E V . Then, using (2.20), Lemma 2.4, and (2.21), we get 

*le(V )IIL2(Q) = lkTA)I2(Q) > C ||TlAv | |v|k 

There is an interpolation operator Ik: H 1( __ V k defined by (cf. [5]) 

(2.22) [k(s)j (me) := - Iq$ds 

at the midpoints me of the edge e in Sk. 
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A simple homogeneity argument shows that 

(2.23) IlkIIk?CIIH() V$ E H '(Q) 
It follows from a simple calculation (cf. [5]) that 

(2.24) diVk [rk $]= Pk(div ) E H1(Q), 

and 

(2.25) rotk [kq$] =Pk(rot) Vq E H(Q) 
The following interpolation error estimate also holds (cf. [5]): 

(2.26) lk |L 2(Sq) + hk || 0 rlk 0 Ilk < Ch 2 
2 V H 2(Q) 

Let J7I1 be defined by 

(2.27) k (q$)=Ik(q$)- I(f lk(q>) y ' dx V)y' V E H1. 

It follows that J7I1 maps H 1 into V Moreover, we still have 

(2.28) lhIlk ? CIqIH1(Q) Vq E H1 

(2.29) divk [Ik q] =Pk(div q) V E H', 

and 

(2.30) || rnk' (t 11 L2(Q) +hkll 0 -k rl ||Ik < Ch2 |2( V0 E H 2 (j). 
Also, a standard interpolation error estimate (cf. [4, Theorem 3.1.6]) shows 
that 
(2.31) 1k" - Pk-1 YI/ IIL2(Q) < Chk IVIHI'(Q) Vi EH1(Q). 

The following lemma is the discrete analog of Lemma 2.1. 

Lemma 2.6. There exists a positive constant C such that, given any q E Qk, 
there exists V E V1I which satisfies 

(2.32) divk v = q 

and 

(2.33) || v Ilk < C IIqIIL2((Q). 

Proof. From Lemma 2.1, there exists w E H such that 

(2.34) div w = q 
and 

(2.35) 11 W 11 H I(Q) < CIIqIIL2(Q). 

Let v = ll w . Then by (2.29) and (2.34) we have 

divk v = q, 
and by (2.28) and (2.35), 

|| V Ilk < C IIqIIL2(Q). 5 

With Corollary 2.5 and Lemma 2.6 in place, the following discrete version 
of Proposition 2.2 follows verbatim. 
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Proposition 2.7. There exists a positive constant C such that for any (v1, q ) E 

VkL X Qk-1, 

A (xV q ) 
, 

(V2 ) 

(2.36) (v2 q2)EV'su XQk 1\({O,O)} II2IIk + lIq2llL2(f) 

> C(IIV1 Ilk + IlIq IIL2(Q2)) 

Corollary 2.8. Given any linear functional F on V1 x Qk- 1I there exists a 
unique ( V ql) E V ' 

X Qk-l such that 

(2.37) -T ((V ql), (2 q2)) F (v2 q2)) (V q2) E Vk X Qk -I- 

In particular, the discretized equation (1.26) is uniquely solvable. 

We can now establish the discretization error estimate. 

Theorem 2.9. If (u, p) E H x L2(Q) solves (1.22) and (uk, pk) e V x 
Qk-1 solves (1.26), then 

n 

(2.38) II U - U kIlk + IIP -Pk IIL2(Q) ? Chk (1 f I L2( Ez H1/2(r) 

Proof. We follow the ideas of Scott (cf. [12] and [13, pp. 178-179]) for estimat- 
ing the errors caused by variational crimes. Given any (v , q) E V 

' 
X Qk-l 

using (2.36), we have 

IIU - uk lk + IIP-PkIIL2(Qj) 

? IIU - VlIk + IIP - qIIL2(Qj) + 11 -UIlk + lIq -PkIIL2(Q) 

(2.39) ? IIU - Vllk + IIP - qIIL2(Q2) 

sup 

SU|k ((V- kU, 
q -Pk), (W, r)) 

(w,r)EV' XQkl\{(O,O)} II1IIk + IIrIIL2(Q) 

By (1.29) and (1.26) we have 
(2.40) 

A (V -U q - Pk), (W, r)) 
IW&Ilk + IIrIIL2(Qj) 

< C (IIU-Vlk + IIP-qIIL2(l)) 

|k ((U,p),(w,r)) - [ f *fWdx + gi *w Jr, ds] 

Il|W Ilk + IIrIIL2(Q) 
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Combining (2.39) and (2.40), we have 
(2.41) 
u-u' k Ilk + IIP -PkIL2(Q) 

< C (II - VlIk + IIP - qIIL2(Q)) 

|k ((u , p) (w, r)) - f [f * w dx + Z ri *wlr, ds 

+ Csup -l W|Ilk + llrllL2(Q) 

where the supremum term is taken over all (w , r) E V ' X Qk-1\{(?, 0)}. 
The supremum term on the right-hand side of (2.41) measures the effect of 
the nonconformity of V -Land the effect of reduced integration built into the 
definition of c k (cf. (1.28)). It is bounded by Chku H 2(Q) (cf. [3, 5]). If we 

take (v , q) to be (fIl u , Pk-lp), then (2.30), (2.31) and (2.41) imply that 

lu - ukIlk + IIP - PkIIL2(Q) 

(2.42) < C IIu- rlk,ullk + IIP - Pk-1PIIL2(Q) + hkluIH2(Q)) 

< Chk (IUIH2(0) + IPIH'(Q)) 

Since p = y div u , the theorem follows from (2.42) and the elliptic regularity 
estimate (1.20). 0 

Theorem 2.10. There exists a positive constant C such that 

(2.43) u L 2- ( < Chk (11 f 1( L2() + IIl g H 1/2(rz)) 

Proof. We use a duality argument. Since u - U E L2 Iv E L2(Q) 
v * w dx =0 V w E RM }we can write 

(2.44) UI 
- 

1L2(j sup 
- fkO( x 

u-uk Le L 2 ()\{ O L 2(n2) 

Let w E L2 (Q). Then 

-div{2p, e(C) + Atr (4())3a} = w innQ, 
(2.45) 

(2 p c(C) + Atr tc(C)) ) v Jr, = 0, I < i < n, 

has a unique solution C e H 2(Q) because conditions (1.16) and (1.17) are 

satisfied for (w , 0) . 
The boundary value problem (2.45) is equivalent to 

(2.46) ( ,(),(v , q)) = W, J w*v dx, 

for all ( v , q). E H 1 xL2(Q), where = (Al/(2,u)) div C . The elliptic regularity 

estimate (1.20) implies that 

(2.47) 11 C 11 H2(Q) + 114IHI(Q) ? C 11 W 11 L 2(Q). 
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Let ( k k)E V k X Qk l satisfy 

(2.48) k' k k) (V , q)) = jW *Vdx V(v , q) e V X Qkl. 

Theorem 2.9 implies that 

(2.49) 1 - C Ilk + - k IIL2() < Chk || W || L 2(Q) e.j k 

The interpolation error estimates (2.30)-(2.3 1) and (2.47) imply that 

IIC - | lk'CIIL2(S2) + hkI|C - fkl'IIk + hkIll- Pk-l4V(Q) 

Using (1.29), (2.46) and (2.48), we have 
(2.51) 

|21(U-U)-wdxl 

= k (U, P)(- -(4k(U), (u 'u ( Pk)) 

+, C{(IIC-c, IIk+II k I ))(I Ik +(U,Q p))-k jI + (U) P)-) 

+ k(IICk-n44 Ilk + I(Uk -Pkl~II ))(IIu Ilk + IIPPk I-L'U, P Pk(IP)) 

+-k ((C-C ,-k), (1kU,UPkl1P)) 
r-k 

+ 7~k ri4-Lk Skk 
- Pk- l4) (U - U P k)) 

+k ((lkC , Pk-l), (U-Uk PPk)) 

m ( )(2 , (),(Teoe 2.q n ( 4)- we know that 

- Ck I(llk4-C l+kIL2(-) (4ii U-I k + Ilk - IIPL-(Pk-)IP )2(Q) 

+ (lICk -k k Ilk + lNk- Pk-4llL2(Q)) (II -Ukllk + IIP-PkkL2(i2)) 

+ |C k (I()c ( llL , llk U, Pk-P1)) 

+ |k ((k Ck Pk-14), (U - U PPk)) 

+ -q ((C 4, (U, p))-qk ((C 4, (U, p)) 

From (2.30)-(2.31), (1.20), Theorem 2.9 a'nd (2.49)-(2.50), we know that 
(2.52) 

(11 - C Ilk + N X- k4lL(Q) IIlU-k rlUllk + IIP - Pk-IPIIL2 (Q)) 

+ (llCk n~~~rkC CIlk + Nlk Pk-1411V (S2) ) (1- U Ilk + IIP -Pk IIL2(2)) 

< Chk2 IIW,IIL2(Q) 11ifilL2(Q) + 11 11HIIH'2(r,)) 
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It therefore remains to estimate 

|k (;k '4()4(rk U, Pk-1P)) 

|qk (rlk SC Pk-l4) , (U -U, P -Pk)) 

and 

|<~~~( (; g), -u p)-k ((,g,(U, p)) 

In order to obtain a bound for s4 (( - C ' '-k), (Fl u, Pk.1P)) 

first note that by (1.27), the fact that = y divC , (2.45) and (2.48), we have 

(2.53) 

(k - C - k) (JlI U, Pk- IP)) 
;k 

=~~~~~~~~~~~ g (14g,(ku kl)-2|w* llku) dx 

=j [k(C) : c (VI u) + cdivk(f Iu)1 dx - + w * (1-Iu) dx 

= 
* 
(C) : k*(fI-Tu) - k(C) ek(17kIU)] dx 

+ J [eK(): k(fk U) + div flk+Iu] dx 

+ J [+ tr(e(C))f : gradk(flkLu) + div (+tr(c (C))) ( vI) u] dx, 

where c gradk + (grad Y) = gradk . - I (rotk 0 Standard 

nonconforming estimates (cf. [5]) and elliptic regularity (1.20) and (2.47) give 
estimates on the last two integrals, i.e., 

fI IQ [( k(I4U) + div(ck(C)) * Hk ] dx 

(2. 54) ? Chk ICIH2(a) I UIH2(Q) 

W Chk tIWIIL2(O) (gIfL2(2) + (ri) 

and 
(2.55) 

j| [2 tr(e( ): gradk(H u) + div (+tr(e(C))5Y rl u1 dx 

< ChA I2IWIH2(Q) IUI-2+(Q) 

< Ch 2 IIW ILr2/Q) 11L2fir)o + 1 lg ll[H112(r \8 
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We must still show that 

I Ju [~k(4'): k(rJ u) - ( (k(kU)] dx 

(2.56) n (2.56) ~~~~< Ch 2 
IIWIIL2(Q) (II2 + jig IIIH1/2W1)) 

The left-hand side of (2.56) is bounded by 
(2.57) 

Ijngradk4 [-2Pk-l(rotk(Hiu))x] -gradk: [-j(rotk(Hl'u))x] dx 

+ /a [-Pk-l (rotk;)X1 gradk(nkku)- [-2 rotk;)X] gradk(Hj)dx 

-4iPk- (rotk,)X: - 4 [(rotk )X r atk( -u)] dx 

For the first term of (2.57) we have by (2.30) and (2.31) 

j 2gradk 4: (rotk (HILu) - Pk_lrotk 
(Hk u)) X dx 

= 12 j (gradk-Pklgradkd) (rotk(Hlu) - Pklrotk(I'u)) Xdx 

= jn (grad k 4-Pk1 I gradk ) [rotk ((HI )-) + (rotk,-Pk_rotkQ) 

+ Pk-l (rotk(u - Hlu)) ] dx 

? Ch2k I,CIH2 (Q) I U I H2 (a) 

< Ch||W IIIL2() (IIf IIL2(p) + 7 11g.IIHI/2(ri)) 

Similar arguments yield the same bound for the second and third terms of 
(2.57). 

Putting these bounds into (2.53), we have 

gk ((;- Ck' S 4- 'k) 
(f,U, Pk-lP)) 

(2.58) ?< Chk IIL2(p) (llfh2) + 1 1I-IIHI12(ri)) 

We can analogously (by interchanging (u , p) with ( , t),and (Uk'Pk) 

with (4 , k derive the following estimate: 
k 

|-7k (1('C ,k Pk-l4) , (U - U PPk)) 

(2. 59) < Chk2 I{ I2(n) IUIH2(a) 

< Chk IIwIL2(e) (k IIW II2(Q) + II 11 IIH1/2(ri)) 
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Finally, we have 

| ((4 4),(U, p))- -k ((,4,(U, P)) 

(2.60) kL*k( -(u) -K(4) ;k()| 

Ch II2 3IIL2(Q) (IIfiI1L2(S2) + 11.IIH1/2(ri)) 

which is obtained by arguments similar to those in the proof of (2.56). Com- 
bining (2.51), (2.52), (2.58), (2.59), and (2.60), we therefore have 

I2 (u-u )wdx| 

(2.61 ) n\ 
(< Ch 21WIL2(n) (IIAfIL2(Q) + E l' IIHI/2(ri)) 

for all w E L2(ij). Combining (2.61) and (2.44) completes the proof. 11 

Remark. The L2 estimate in Theorem 2.10 is crucial in our proof of conver- 
gence of the multigrid method. This is one reason why V ' is preferable over 
Vk The duality argument in the proof of Theorem 2.10 would not work for 
V because condition (l.17) is only satisfied by (w , 0) where w E L 

3. INTERGRID TRANSFER OPERATORS AND MESH-DEPENDENT NORMS 

In this section we define the intergrid transfer operators and the mesh- 
dependent norms. The estimates involving the intergrid transfer operators will 
play an important role in the convergence analysis of the multigrid method. 

The coarse-to-fine operator Ik_I . k_ X Qk-2 - Uk X Qk-I is defined 
by 

(3.1) Ikk-l(v , q) = (P v q) 

where Pk L 2(Q) Vk is the L2 orthogonal projection operator. Note 
that P kV can be explicitly defined by 
(3.2) 

p^k(V)(me) 

f v(me) if me eint T for some T E?4-1 or if me e aO, 

= I gT l+IT20 (I T [vIT, (me)] + T21 [V IT2 (me)]) if e = Tf n T2 for some 

I T1, T2 E k-1 

In order to define the fine-to-coarse operator Ik 1, we introduce the following k 
mesh-dependent inner product: 

(3.3) ((v 1, ql), (v 2 q2))= (VI I V) L2(Q) + h 2(q I, q2) L2 (Q) 

Then h: e VXk V X Qk-2 is defined by 

(3.4) q v q ) Ik 
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for all (v 1, ql) E V X Qk-I and ( v , q2) E V X Qk-2 

Lemma 3.1. The following properties of Ik and Ik-h1 hold: 

(i) RM C Vkfork=1, 2.... 
(ii) Given any (v,q) E Vk XQkl, then (v,q) E V XQk-l if and 

only if ((v,q),(w , O))=Oforall W E RM 

(iii) 4 Vk1x Qk-k ) V X Qk-I 

(iV) I :k 1 V X Qk-I k-I X Qk-2 

Proof. Property (i) is trivial. Property (ii) follows from (3.3), (iii) follows from 
(3.1), (i) and (ii), and (iv) follows from (3.1), (3.4), (i) and (ii). El 

Remark. The fact that the constraints on V1 J can be enforced by the mesh- 
dependent inner product as described in Lemma 3.1 (ii) is another reason why 
V I is preferable to V . As a consequence, these constraints are preserved 

by the intergrid transfer operators k_ and Ik- 1 (Lemmas 3.1 (iii) and (iv)). 
We will take advantage of this in the construction of the multigrid algorithm in 
?4. 

Let Bk: Vk X Qk- V kX Qk 1 be defined by 

(Bk (vI ql ), (v q2 ))k 

(Vk ' ql) ' (v2) q2)) V(l.q, l.., el.k X Qk-1I 

Lemma 3.2. The operator Bk maps Vk X Qk-1 into VI X Qk-1I 

Proof. Let (v , q) E Vk X Qk-1. Then 

(Bk(V , q), (W , ?)) = Wk ((V, q), (W , 0)) 0 V W E RM. 

Therefore, Bk(v, q) E V l X Qk-1 by Lemma 3.1 (ii). 5 

Let Bk-: V 
I 

XQk-1 V U'XjQk-1 be the restriction of Bk to V k XQk-. 

Lemma 3.3. There exists a positive constant C such that the spectral radius of 
B,l is less than or equal to Ch-2 for k = 1, 2,. 
Proof. This is an immediate consequence of (3.3), (3.5), (1.29) and the follow- 
ing inverse estimate (cf. [4, Theorem 3.2.6]): 

(3.6) || w Ilk < Ch- 1 11 wel 11 L 2(Q) V W E V - 

The mesh-dependent norms on V k X Qk-1 are defined as follows: 

(3.7) 111(v , q)llls,k =((B_l2 )s12 ( V, q), (V , q)) V(v, q) E V 
' 

X Qk-l- 

Since Bkl is nonsingular (cf. Proposition 2.7) and symmetric, (B,l )2 is positive 
definite and (3.7) defines a norm on V k x Qk-1 for each s E R. 
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The following properties of the mesh-dependent norms are trivial: 

(3.8) III(v q)IIIo ,k = V 1 2(n) + h 2 
ll12(,) V(v , q) E V X Qk-1 

A7 ((V 1ql I) , (v2 , q2))I 

(3.9) 
1( ql) 1112,k III (V q2) 1110, k V (V, ql), (V2, q2) E V' X Qk-1, 

and 

|S7k((v , q), (V, q'))| 
(3.10) 111(v , q)1112,k = sup I )I 

(v ',q')E V XQk k\{(O?)} 

for all (v, q) E V X Qk-I 

Lemma 3.4. There exists a positive constant C such that 

(i) 11Ik1_ (v q)IIIo,k < C II(V, q)IIIo,k-I for all (v , q) E K-1 X Qk-2. 

(ii) IIv - Pk 11 L 2(Q) < Chk 11 V Ilk-I1 for all V E V 

(iii) IIIIkk-I(L1 , Pk-2Vt) - (HLk-, Pk-IVt)111o,k < Ch2 {JIOIH2(Q) + IV'HIH(Q)} 
for all (q , y) E HI2(Q) x H1(Q). 

Proof. Since Pk is the L2 orthogonal projection onto V k the estimate (i) fol- 
lows from (3.1) and (3.8). The proof of inequality (ii) is based on the averaging 
formula (3.2), and a straightforward computation. For more details we refer 
the reader to the proof of Theorem 2.3 in [2]. Estimate (iii) is a consequence 
of (3.8) and the interpolation error estimates (2.30) and (2.31). E 

Let pk-1 V ' x Qk-I x Qk-2 be defined by k k -I 

(3.11) 1kl(k ( , ql), (2v q2)) =k ((V I , ql) , Ik-(22) 

for all (v 1 ql) E V X Qk-I and (v2, q2) E v X Qk-2. The operator 

k- will appear in the convergence analysis but not in the multigrid algorithm. 
It follows from Lemma 3.4 (i) and (3.9)-(3.1 1) that 

(3.12) IIIPk1 (v, q)1112, k-I < CIII(v, q)1112,k V(v , q) E Vj X Qk-1I 

The next lemma is the basis of Lemmas 3.6 and 3.7, which are crucial for 
the proof of the approximation property (Lemma S.3) in the Supplement. 

Lemma 3.5. Let k > 2 and w E L 2(Q). Assume that ( k 4k) E V k X Qk l 

satisfies 

(3 13) gk (;,X) ,q)) w v dx V(v , q) E Vk Qk-1I 

and E k1 'V 1) u;:-1X Qk-2 satisfies 
(3.14) 

Mk-I (( ' ,k-i), (V , q)) =j W V dx V(v , q) E Vl X Qk-2 
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Then there exists a positive constant C such that 

(3.15) 11(S- k-l) _p- 
I 

( Sk ' X)1110,k- I < Ch' 11 IIL L(Q)- 

Proof. Let _ pk-l( k - 
k k (1 XQk2. Recall 

that by (3.8), 111( ?1, Z)lIIIgk-1 = II o 2 (a) 
+ h2ll|T l12(1). We will estimate 

1711 L 2(Q) and hk- ll TllL2(a) by two duality arguments. 
Since ?I E L 2(Q),the boundary value problem 

-div {2,uE($) + Atr (j(O)) } = 2jutl innQ, 

(3.16) 

(2p,(q(0) +/r(t()) ) vilri = 0, 1 <i < n, 

has a unique solution 0 E H 2 (Q) because (1.16) and (1.17) are satisfied. The 
elliptic regularity estimate (1.20) implies that 

(3.17) || | H2(a) < C ||11 L2(Q)- 

Let k- 1) EVk-D X Qk-2 satisfy 
(3.18) 

k-l (((>-l fi Yk-1), (V , q))=|t* V dx V (v , q) E Vk_ X Qk-2. 

By Theorem 2.10, we have 

(3.19) L 2 - I L2(Q) < Chk || |11 L2(Q) 

But by (3.18), (3.11), the definition of (I, T), (3.13), (3.14), (3.19), (3.17), 
and (2.30), we have 

II?,11I2( 2 
7k- I(k- ' k-1), (?I, T)) 

= ak-i ((I V,k- 1) '(k-' Xk-1)) 

- !pkkidx 

-k. e(.k- I (k-' k - I 4 k) 

? IIWIIL2(a) (Ik__ - kIIL2(a) + 11 - Hi4IIL2(Q) 

l+ Ik(k - Xk l)IIL2(a)) 

< |IWIIL2(a) (Ch2 II?,I IL2 (QI)) 

Therefore, 

(3.20) jj 2 (QI) < Ch I2w 11 L2(Q) 
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Let (v*, q*) E X Qk2 satisfy 

(3.21) -qk-l (v *, q*), (v V, q)) h_ 
2 

rq dx V(v v, q) E V' X- Qk-2- 

By Proposition 2.7 we have 

(3.22) || V Ilk-I + Iq* IIL2(Q) < hk-1I I2L2(Q) 
From Lemma 3.4 (ii), (3.21) and (3.22), we have 

h 2_ IITll12( -=-k-l ((V, q*), (ij, T)) 

= k-1 ((v* q*) {(k 1 ' k-1)) -k (Ikk (V*' q*) (k 'k)) 

= Lw - (v* - P v*)dx 

11 || SUL2 (Q) |V -Pk IIv Q 

<Ch' ||W IIL2(Q) 11 T IIL2(Q) 

Hence, 

(3.23) hk-II<ITIL2(Q) C C2k 11 W 11 L2(Q)- 

The lemma now follows from (3.20) and (3.23). O 

Lemma 3.6. There exists a positive constant C such that for k > 2 

(3.24) IKv - Pkk 2) < ChkB(v q)2IIKI-V 

for all (v , q) E V-L X Qk-2 

Proof. Given any (v, q) E VLj X Qk-2 , let (4 kk) E V X Qkl satisfy 
gk (( ;k ' Xk ), (V, .qk )I)k 

(3.25)~ ~ Jv (- PV) * v'dx V (v', q') E Vkl X Qk-l 

and ' ,k-j) E V - X Qk-2 satisfy 
k- - I ( k-1 kl ISq) 

(3.26) 
=326 (v -P v) * v'dx V(v, q') E V-1 XQk-2. 

Therefore, using (3.1), (3.1 1), and Lemma 3.5, we have 

llv - = 1(v-P v)-vdx- (v-P v)-P vdx k~ L2 (Q) k ~k~ Q-' e-k~k 

? I1IG(Sk1 , Xk-i)k-,) k (v, qk) Ilo,k-1 11( k q) Ik2 k-l 

-Ck- 1V v q2 ? Ch~~~ j/v - ~~~kQII~~2(C)I q)1II20,k-1IIvq 
11,k 
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Hence, 

||l V - P V || L 2(Q) < Chk |(v q)1112,k-l- El 

Lemma 3.7. Let k > 2 and w E L2(Q), (vk, E) e V x Qk-I satisfy 

(3.27) k ((Vk q), (V , q)) = jwqdx V(v , q) E V 
' 

X Qk-1, 

and (vk 1 qk-1) E v 
X Qk-2 satisfy 

(3.28) 9k-1 (v 1' qk-1), ( q)) = wq dx V (v , q) E Vj X Qk-2. 

Then there exists a positive constant C such that 

( 3.29) III ( k ' k qk ) Ik - (v k-I k1)1l,k<Ck| |2Q 

Proof. Recall that 

III(vk qk) -Ik 4(vk1' qk-l)I,Ik 

V 11- 2(n) + hk 1qk - qk-I IIL2(Q) 
We first estimate 11 V k 

- 
k V k-I II L 2(a) by a duality argument. 

Since v k P kV kE e L 2 (Q), the boundary value problem 

-div {2,u c ( ) + tr ( = 24u(k v Pk k) )inQ, 

(2,u (C) + Atr (C 4) 6) vilIri = ?, 1 < i < n, 

has a unique solution C E H 2 (Q) because ( 1.16) and ( 1.17) are satisfied. 
Let ( k) e V X Qk-I satisfy 

-k (V;k Xk, q)) = |(- 
P k v dx V(v, q) E V 

' 
X Qk-1, 

and Ck-1 ' k-i) E V X Qk-2 satisfy 

A-1I ((4 1 k-l) ,(v q)) 

=j (k- kPk- )Ivdx V(v,q)EV 1 XQk-2. 

By Theorem 2.9 and the elliptic regularity estimate (1.20) we have 

( 3 30) 7 k- I 1|L2(Q) < | - 
A 

div | + |k-l - 
A 

div | 
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Let ( 1I , T) =(k')pk (Ck' k ) . Using (3.1), (3.11), (3.27), and (3.28), 
we have 

kl Vk-I II-Q 

= k (kik' gk), (, qk) Ik- '(Vk-1 ' qk-)) 

(3.31) = (p (4 kk), (I qk)) 

= jwTdx 

<: ||W IIL2(n) 11TIIL2(n). 

~~ ( ~k 4) (C k- '4-1) + (C _ 4k-1 )Pk ( ,k) it 
follows from (3.8), (3.30), and Lemma 3.5 that 

(3.32) IITIIL2(n) ?< Kk - k-I 1IL2(n) + 4- IIK1k , kl) p-k (Ck k)IIIO,k-1 

< C*k Il k-P k-1II (Q) 

The estimates (3.31) and (3.32) together imply that 

(3.33) vk - P k V ki I I2(Q) ? Chk IWIIL2(Q). 

On the other hand, Proposition 2.7 implies that 

(3.34) 11 vk Ilk-1 + llqk-11IL2(n) 
? CW 2 

and 

(3.35) || Vk"'k + v Iqk IL2( ) < C IIWIIL2(n). 

Therefore, we have 

(3.36) hk llqk - qk-1IlL2(n) < Chk IIWIIL2(Q). 

The estimate (3.29) now follows from (3.33) and (3.36). 0 

4. THE MULTIGRID ALGORITHM 

We first describe the kth-level iteration scheme. The full multigrid algorithm 
consists of a nested iteration of these schemes. 

The kth-level iteration. The kth-level iteration with initial guess (y , zo) E 

Vk X Qk-1 yields MG(k, (y , zo), (w , r)) as an approximate solution to 

the following equation in V 1 X Qk-I 

(4.1) B I 
(y , z) =(w , r). 

For k = 1, MG( l, (y , zo), ( w , r)) is the solution obtained from a direct 

method. In other words, 

MG(1, (y, zo), (w , r)) = (BL)-<(w , r). 
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For k > 1, there are two steps: 
Smoothing step. Let (y z1) e V kX Qk-1 be defined recursively by the 

equations 

(y , zi) = (y ,zi-1) 

(4.2) 1 
+-BkI(w, r)-Bk(y , z,1 I)) < 1 <<m, 

where m is a positive integer independent of the mesh parameter k and the 
Lame constants (,u, A), and Ak := C h-4 (cf. Lemma 3.3) dominates the 
spectral radius of (B, -)2- 

Correction step. Let (T , r) := Ihk-((w , r) - Bk(y , zm)). Let (v,i qi) 
E V 1 Qk-2 (O <? i < 2 )be defined recursively by 

(vo0, qo) = (?, O) and 

(vi, qi) = MG(k - 1, (v._,, qj-1), (UT, r)), i = 1, 2. 

Then MG(k, (y , zo), ( w, g)) is defined to be (y ,Zm) +Ikk_(V , q2). 

Remark. In the smoothing step we use Bk instead of BkL for the following 
reason. The space Vk X Qk-1 has a natural coordinate system, namely the 
values of v at the midpoints of Sk and the values of q on the triangles of 
4-I , with respect to which (, *)k is represented by a diagonal matrix, and Bk 
is represented by a sparse banded matrix. In view of Lemma 3.2, the result of the 
smoothing step (y, Zm) belongs to U V x Qk-1 automatically. Furthermore, 

the result of the correction step also belongs to V I 
X Qk- 1 by Lemma 3.1 (iii) 

and (iv). Therefore, in the actual implementation of the multigrid method we 
use only the natural coordinate system of V k X Qk- I for k > 1 . We only have 

to handle the constraints of the V ' spaces at the coarsest level, namely when 
k=l.~~~~~~~~~ k = i1. 

The full multigrid algorithm. In the case k = 1, the approximate solution 
(u 7, p*) of (1.26) is obtained by a direct method. The approximate solutions 
( p kP) ( k > 2 ) of ( 1.26) are obtained recursively from 

(Uk \)=MG(k (Ullkk\-l(fO\\)) 1 <l <r, 
Q<k Pk,k= 11,P,qPrJ) , k k 

where ( f kE V' satisfies nf x Ji vI s 
for egn 

(f k Gk U k1 fI0) <I<r 
for all ve ij~ an r ^s a psiiv inege-needetok nd(t)) 
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Since Ik4 ik- , and Bk are represented by sparse, banded matrices with 
6(nk) nonzero entries, the total work of the full multigrid algorithm is therefore 
6(nk) . The proof is the same as the one in [1]. 

5. CONVERGENCE ANALYSIS 

We follow the methodology of [1]. The details are given in the supplement to 
this paper. The first step is to discuss the convergence of the two-grid algorithm 
where the residual equation is solved exactly on the coarser grid. The final 
output of the two-grid algorithm for (4.1) is therefore ( y , zo) (y , zm) + 

m 

Ik4(v I , qO), where 

(vK ql) = (B'k_)-1(T T) 

= (B I)1Ihk1 ((W ? r) - Bk(y Zm)) 

- (Bk_l)j i '4jBk(y- y Z-Zm) 

The following is the result for the two-grid algorithm. 

Theorem (convergence of the two-grid algorithm). There exists a positive con- 
stant C such that for k > 1 

III(Y - Y , Z-ZO)I Io,k ? Cm 121II(Y - YO, Z-ZO)IIIo,k, 

where (y, z) solves (4.1), (y , zo) is the initial guess, and (y , z1) is the 
output of the two-grid algorithm. Therefore, for m sufficiently large, the two- 
grid algorithm is a contraction with contraction number bounded away from one, 
independent of k. 

The convergence theorem for the kth-level iteration follows. 

Theorem (convergence of the kth-level iteration). There exists a positive con- 
stant C such that when the kth-level iteration is applied to (4.1), we have 

III(Y , z)-MG(k, (y , ZO), (w , r))1IIo,k ? Cm-"'2 II(Y - yO, Z-ZO)IIIO,k, 

provided that m is chosen to be large enough. Therefore, for m sufficiently large, 
the kth-level iteration is a contraction with contraction number bounded away 
from one, independent of k. 

A perturbation argument then gives full multigrid convergence. 

Theorem (full multigrid convergence). If m is chosen large enough so that the 
kth-level iteration is a contraction with respect to I * IIIto, k and the parameter r 
in the full multigrid algorithm is also chosen large enough, then 

II&lk - 1IL2(Q) + hk (k U- Ilk + IIPk -P IIL2(Q)) 

? Chk {||fIIL2(Q) + I Ig IHt/2(ri)} 

Here, ( u, pu ) is the approximate solution of (1.26) obtained from the full 
multigrid algorithm. 
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6. A NUMERICAL EXPERIMENT 

The full multigrid algorithm described in ?4 was applied to the pure traction 
boundary value problem (1. 15) with ,u = 1/2. The domain Q is the unit 
square, the vertices are SI = (0, 0), S2 = (1, 0), S3 = (1, 1) and S4 = (0, 1), 
and 90 consists of AS1S2S4 and AS2S3S4. The body force f = (f], f2)t is 

given by 

fi = -7r2 sin7x, sinrx2+ 27r2 (+ 1) cos7ixl sinirx2, 

f2 = -7r2 cos rx1 cos tx2+ 27r2 (+ ) sin7tXl cos 7X2, 

and the tractions are given by 

g = (- ,cosrxi,O)t, g2 Qrsin x2,-7cos rx2), 

g = (- cosx7rX, 0), and g = (n sin7rx2, -,cos 7rx2). 

The exact solution u = (ul, u2)t E H2 is 

ul= (-sinrxI + - cos 7rxI sin 7rtx+2 + - 2 

( 1 . 
U2 = - COS 7iX1 + - sinrXI) COS 7rX2. 

In the following table, v = A/2(2 + A) is the Poisson ratio, h represents the 
lengths of the horizontal and vertical sides of the triangles in the triangulation, 
r is the number of nested iterations in the full multigrid algorithm, and the 
numbers in the third, fifth, and seventh (respectively fourth, sixth, and eighth) 
columns represent the number m of smoothing steps required to achieve an 
L2 relative error of less that 5% (respectively 3%) in the displacement. It is 
observed that this algorithm fails to converge for this problem for m < 4. 

r = 20 l = 30 r = 40 
Z 

n(5%) IlL(3%) 'tmi(5%) T/1(3%S) '(5%) imt(3/o) 

(0.5)6 13 19 9 13 7 10 
0.47619 (0.5 )7 7 9 5 6 5 5 

(0.5 )8 5 5 5 5 5 
(0.5)6 20 27 15 19 12 15 

0.49751 (0.5)7 11 14 8 10 6 8 
(0.5)8 6 8 5 5 5 5 
(0.5)6 21 28 15 20 12 16 

0.49975 (0( 5)7 12 15 8 11 7 9 
(0.5)8 6 8 5 6 5 5 
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